
xwidgets

Johan Mabille and Sylvain Corlay

Jan 26, 2021

INSTALLATION

1 Licensing 3
1.1 Installation . 3
1.2 User Guide . 4
1.3 Serialization and Deserialization of Widget Attributes . 7
1.4 Compiler workarounds . 10
1.5 Releasing xwidgets . 11
1.6 Related projects . 12

i

ii

xwidgets

The C++ backend for Jupyter interactive widgets.

xwidgets is a C++ implementation of the Jupyter interactive widgets protocol. The Python reference implementa-
tion is available in the ipywidgets project.

xwidgets enables the use of the Jupyter interactive widgets in the C++ notebook, powered by the cling C++ interpreter
and the xeus-cling kernel. xwidgets can also be used to create applications making use of the Jupyter interactive
widgets without the C++ kernel per se.

xwidgets and its dependencies require a modern C++ compiler supporting C++14. The following C++ compilers
are supported:

• On Windows platforms, Visual C++ 2015 Update 2, or more recent

• On Unix platforms, gcc 4.9 or a recent version of Clang

INSTALLATION 1

https://github.com/jupyter-widgets/ipywidgets
https://root.cern.ch/cling
https://github.com/jupyter-xeus/xeus-cling

xwidgets

2 INSTALLATION

CHAPTER

ONE

LICENSING

We use a shared copyright model that enables all contributors to maintain the copyright on their contributions.

This software is licensed under the BSD-3-Clause license. See the LICENSE file for details.

1.1 Installation

xwidgets is a header-only library but depends on some traditional libraries that need to be installed. On Linux, instal-
lation of the dependencies can be done through the package manager, anaconda or manual compilation.

1.1.1 Using the conda package

A package for xwidgets is available on the conda package manager. The package will also pull all the dependencies.

conda install xwidgets -c conda-forge

1.1.2 From source with cmake

You can also install xwidgets from source with cmake. On Unix platforms, from the source directory: However,
you need to make sure to have the required libraries available on your machine.

mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/path/to/prefix ..
make install

On Windows platforms, from the source directory:

mkdir build
cd build
cmake -G "NMake Makefiles" -DCMAKE_INSTALL_PREFIX=/path/to/prefix ..
nmake
nmake install

3

xwidgets

1.2 User Guide

1.2.1 What are Widgets?

Widgets are eventful C++ objects that have a representation in the browser, often a control like a slider, a textbox etc.

Widgets can be used to build interactive GUIs in Jupyter notebooks. They can also be used to synchronize information
between C++ and JavaScript.

1.2.2 Using Widgets

Widgets can be used in the Jupyter notebook with the xeus-cling C++ kernel simply by importing headers of the
xwidgets library. For example, including the xslider headers makes the slider widget available.

#include "xwidgets/xslider.hpp"

Displaying Widgets

Widgets can be displayed using Jupyter’s display framework.

xw::slider<double> slider;
slider.display();

The Model-View-Controller Pattern

If you display the same widget twice, the displayed instances in the front-end will remain in sync with each other.
Dragging one slider will modify the value for the other slider. The reason for that is that each time a widget is
displayed, a new visual representation is created, reflecting the same underlying object, or model. This Model-View-
Controller (MVC) architectural pattern is applied. Each C++ instance of a widget type is a new instance of the model.

1.2.3 The Value Semantics in xwidgets

The xwidgets framework differs from most common C++ widgets framework in that widgets have a value semantics
instead of an entity semantics. Not dynamic polymorphism is at play, but static polymorphism based on the CRTP
pattern.

A consequence, is that if a widget is copied, the resulting widget instance will have a new counterpart in the front-
end. In the following example, slider2 is a copy of slider1. Upon creation, a new front-end widget is created,
reflecting the state of that new widget instance. The states of slider1 and slider2 are not synchronized.

xw::slider<double> slider1;
auto slider2 = slider1;
slider2.value = 50.0;
slider1.display();
slider2.display();

However, if slider2was a reference on slider1, or if slider1 had been moved to slider2, slider2would
still refer to the same widget model in the front-end.

4 Chapter 1. Licensing

xwidgets

Resource Acquisition is Initialization

The xwidgets framework makes use of the RAII pattern (Resource Acquisition is Initialization). Creating a new
widget instance results in the creation of the counterpart in the HTML/JavaScript frontend. The destructor triggers the
destruction of the frontend model and all the views, unless the object being destructed has already been moved from.

This architecture ties the lifetime of the front-end object to that of the C++ model.

1.2.4 Naming Conventions and Widget Generators

CRTP bases and final classes

Widget classes with names prefixed by x are not meant to be directly instantiated. For example, xslider is the
top-most CRTP base of slider.

Widget classes with names that are not prefixed by x can be instantiated, but are final, i.e. they cannot be inherited
from.

In fact, these final classes are typedefs on a special template parameterized by its base. For example, we have:

using button = xmaterialize<xbutton>;

Similarly, for template widget types, we also make use of the xmaterialize class, which

template <class T>
using slider = xmaterialize<xslider, T>;

The xmaterialize class only implements the final inheritance closing the CRTP, together with the RAII logic,
which is to be done at the top-most inheritance level, so that widget creation messages are sent after all the bases have
been initialized.

Generator classes

Simple widget types such as slider may have a large number of attributes that can be set by the user, such as
handle_color, orientation, min, max, value, step, readout_format.

Providing a constructor for slider with a large number of such attributes would make the use of xwidgets very
cumbersome, because users would need to know all the positional arguments to modify only one value. Instead, we
mimick a keyword argument initialization with a method-chaining mechanism.

auto button = xw::slider<double>::initialize()
.min(1.0)
.max(9.0)
.value(4.0)
.orientation("vertical")
.finalize();

This is a classical approach: calls to min, max, value and orientation all return the slider instance (by
rvalue reference, which is optimized with C++ move semantics and copy ellision). The finalize() triggers the
creation of the front-end object with the data.

1.2. User Guide 5

xwidgets

1.2.5 Widget Events

Special Events

Certain widget types such as button are not used to represent data types. Instead, the button widget is used to handle
mouse clicks. The on_click method of the button widget can be used to register functions to be called when the
button is clicked.

xw::button button;

void foo()
{

std::cout << "Clicked!" << std::endl;
}

button.on_click(foo);
button.display();

Xproperty Events

The observer pattern of xwidgets relies upon the xproperty library.

xproperty can be used to

• register callbacks on changes of widget properties

• register custom validators to only accept certain values

• link properties of different widgets

Registering an Observer

In this example, we register an observer for a slider value, triggering the printing of the new slider value.

xw::slider<double> slider;
slider.display()
XOBSERVE(slider, value, [](const auto& s) {

std::cout << "Observer: New Slider value: " << s.value << std::endl;
});

Registering a Validator

In this example, we validate the proposed values for a numerical text. Negative values are rejected.

xw::numeral<double> number;
number.min = -100
number.display()
XVALIDATE(number, value, [](const auto&, double proposal) {

std::cout << "Validator: Proposal: " << proposal << std::endl;
if (proposal < 0)
{

throw std::runtime_error("Only non-negative values are valid.");
}

(continues on next page)

6 Chapter 1. Licensing

https://github.com/jupyter-xeus/xproperty

xwidgets

(continued from previous page)

return proposal;
});

For more details about the API for xproperty, we refer to the xproperty documentation.

1.3 Serialization and Deserialization of Widget Attributes

Properties of xobjects are automatically synchronized with the counterpart front-end object. The synchronization
involves the serialization and deserialization of the modified properties.

1.3.1 Standard case: JSON serialization of properties

By default, if the type held by the property is JSON-serializable, the behavior of xwidgets will be to make use of the
JSON serialization for that type to synchronize the property value between the kernel and the front-end.

By JSON-serializable, we mean that the type has to be convertible from and to the json type of the nlohmann_json
package, a.k.a “JSON for Modern C++”. Integral types, floating points, and standard STL containers are supported by
nlohmann_json.

JSON serialization and deserialization for a user-defined type can be specified by providing an overload of the
to_json and from_json functions in the same namespace where it is defined.

For example, the serialization of a type ns::person with attributes “name”, “address” and “age” can be specified
in the following fashion:

using nlohmann::json;

namespace ns
{

void to_json(json& j, const person& p)
{

j = json{{"name", p.name}, {"address", p.address}, {"age", p.age}};
}

void from_json(const json& j, person& p)
{

p.name = j.at("name").get<std::string>();
p.address = j.at("address").get<std::string>();
p.age = j.at("age").get<int>();

}
}

Upon serialization and deserialization of ns::person objects, the overloads of to_json and from_json are
picked up by argument-dependent lookup (ADL).

Eventually, patches sent to and received from the front-end are JSON objects whose keys are the names of the at-
tributes, and the values are the JSON representations of the new value.

For example, the JSON patch for a slider widget corresponding to a change of attributes “value”, “min”, “read-
out_format” looks like:

{
"value" : 10,
"min": 0,

(continues on next page)

1.3. Serialization and Deserialization of Widget Attributes 7

https://github.com/nlohmann/json/

xwidgets

(continued from previous page)

"readout_format": ".2f"
}

1.3.2 Advanced use cases: making use of binary serialization

The Jupyter Widgets communication protocol allows for the communication of raw binary buffers to the front-end.
This is especially convenient in visualization packages where large numerical arrays may be sent across the wire, or
when serializing images and such.

The Jupyter binary serialization protocol

Upon modification of properties in the front-end or the back-end, the content of the comm message sent to or from the
front-end is

• a JSON patch holding the JSON-serialized values of the modified attributes

• optionally a number of binary frames holding raw data.

On the JavaScript side, the first stage of the deserialization consists in

1. deserializing the JSON into nested JavaScript objects and arrays.

2. inserting the binary frames in the deserialized JSON in the form of DataView objects at locations specified in a
companion buffer_paths array sent across the wire alongside the list of buffers.

For example, in the image widget, the value attribute holds the binary data for the image (encoded in the format
specified with the format string attribute). A patch for a change if the value and format attribute will look like

// JSON patch:

{
"format": "png"

}

// buffer paths
[["value"]]

// Buffers
[{ -- Binary png buffer -- }]

On the JavaSCript side, this gets deserialized into

{
"format": "png",
"value": DataView({ -- Binary png buffer -- })}

}

On the C++ side, the internal machinery of xwidgets automatically composes this list of paths for the user. Custom
widget authors must compose a message of the form

// JSON patch:

{
"format": "png",
"value": "@buffer_reference@0"

(continues on next page)

8 Chapter 1. Licensing

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView

xwidgets

(continued from previous page)

}

// Buffers
[{ -- Binary png buffer -- }]

Instead of specifying the buffer paths in a separate array, the location where the buffer is to be inserted holds a
placeholder string indicating the index of the corresponding buffer in the list, prefixed with @buffer_reference@.

Making use of the Jupyter serialization protocol in xwidgets

Serialization

The serialization is handled by the free function

xwidgets_serialize(value, patch, buffers);

where

• the first argument is a const reference to the value,

• the second argument (patch) to the JSON object being written.

• the third argument (buffers) is a reference to the sequence of buffers of the message.

picked up by argument-dependent lookup, and apply to all xwidgets properties holding values of that type.

Note: The default implementation of xwidgets_serialize simply invokes the JSON serialization for that type.
In most cases, overloading xwidgets_serialize is not necessary. This is mostly relevant for properties for which
one wants to bypass JSON serialization or make use of binary serialization.

Deserialization

The deserialization is handled by the free function

set_property_from_patch(property, patch, buffers);

where

• the first argument is a reference to the property,

• the second argument (patch) holds a const reference to the JSON patch being read.

• the third argument (buffers) holds a const reference to the sequence of buffers being read.

set_property_from_patch is called for each property of the widget.

The default behavior of set_property_from_patch is to invoke the JSON deserialization for each property and
it can be specialized for a specific property type.

For example, the overload of set_property_from_patch for the value property of the image widget reads:

inline void set_property_from_patch(decltype(image::value)& property,
const nl::json& patch,
const xeus::buffer_sequence& buffers)

{
auto it = patch.find(property.name());
if (it != patch.end())
{

using value_type = typename decltype(image::value)::value_type;
(continues on next page)

1.3. Serialization and Deserialization of Widget Attributes 9

xwidgets

(continued from previous page)

std::size_t index = buffer_index(patch[property.name()].template get
→˓<std::string>());

const auto& value_buffer = buffers[index];
const char* value_buf = value_buffer.data<const char>();
property = value_type(value_buf, value_buf + value_buffer.size());

}
}

Note: decltype(image::value) is the type of the value property of the image widget, which is unique to
the image widget, (more specifically, its type is an internal class of the image class).

This specialization is a better match than the default one and is picked-up by argument-dependent lookup, however, this
will not apply to properties of other widgets or other properties of this widget also holding a std::vector<char>.

Overloading xwidgets_deserialize

The default implementation of set_property_from_patch reads:

template <class P>
inline void set_property_from_patch(P& property,

const nl::json& patch,
const xeus::buffer_sequence& buffers)

{
auto it = patch.find(property.name());
if (it != patch.end())
{

typename P::value_type value;
xwidgets_deserialize(value, *it, buffers);
property = value;

}
}

which means that the default behavior is to call into xwidgets_deserialize with the value held by the property.
A way to specify a deserialization method for a user-defined type is to overload the xwidgets_deserialize
method for that type in the same namespace where the type is defined. Then, it will be picked up by argument-
dependent lookup, and apply to all xwidgets properties holding values of that type.

Note: The default implementation of xwidgets_deserialize simply invokes the JSON deserialization for that
type. In most cases, overloading xwidgets_deserialize or set_property_from_patch is not necessary.
This is mostly relevant for properties for which one wants to bypass JSON deserialization or make use of binary
deserialization.

1.4 Compiler workarounds

This page tracks the workarounds for the various compiler issues that we encountered in the development. This is
mostly of interest for developers interested in contributing to xwidgets.

10 Chapter 1. Licensing

xwidgets

1.4.1 Visual Studio 2017 and __declspec(dllexport)

In xwidgets.cpp a number of widget types are precompiled, in order to improve the just-in-time compilation time
in the context of the cling C++ interpreter.

However, with Visual Studio 2017, the introduction of __declspec(dllexport) instructions for certain widget
types causes compilation errors. This is the case for widget types that are used as properties for other widgets such as
xlayout and style widgets.

The upstream MSVC issue issue appears to have been solved with VS2017 15.7 (Preview 3). The impacted build num-
bers for Visual Studio are _MSC_VER==1910, _MSC_VER==1911, _MSC_VER==1912, _MSC_VER==1913.

1.4.2 Visual Studio and CRTP bases

If we have template <class T> class Foo : public Bar<Foo<T>>, then within the implementa-
tion of Foo, Bar should be a template, and not refer to Bar<Foo<T>>. However, unlike GCC and Clang, Visual
Studio incorrectly makes Bar refer to the fully specialized template type.

1.4.3 Visual Studio and ambiguous calls to base constructors in mixins

In xobject.hpp, we explicitely define constructors instead of making use of the using statement for the base
constructor because MSVC wrongly reports that the call to the base class constructor is ambiguous in derived classes.

1.5 Releasing xwidgets

1.5.1 Releasing a new version

From the master branch of xwidgets

• Make sure that you are in sync with the master branch of the upstream remote.

• In file xwidgets_config.hpp, set the macros for XWIDGETS_VERSION_MAJOR,
XWIDGETS_VERSION_MINOR and XWIDGETS_VERSION_PATCH to the desired values.

• Update the README file w.r.t. dependencies on xwidgets.

• Update the environment.yml file used by binder with the new version of xwidgets and dependencies.

• Stage the changes (git add), commit the changes (git commit) and add a tag of the form Major.
minor.patch. It is important to not add any other content to the tag name.

• Push the new commit and tag to the main repository. (git push, and git push --tags)

• Release xwidgets on conda.

• Update the stable branch to point to the latest tag.

1.5. Releasing xwidgets 11

https://developercommunity.visualstudio.com/content/problem/208938/compilation-error-c2057-expected-constant-expressi.html

xwidgets

1.6 Related projects

xplot if the C++ backend for the bqplot 2-D plotting library

C++ code

#include <algorithm>
#include <random>
#include <vector>

#include "xwidgets/xbox.hpp"

#include "xplot/xtoolbar.hpp"
#include "xplot/xfigure.hpp"
#include "xplot/xmarks.hpp"
#include "xplot/xaxes.hpp"

auto randn(std::size_t n)
{

std::vector<double> output(n);
std::random_device rd;
std::mt19937 gen(rd());
std::normal_distribution<> dis(5, 2);

std::for_each(output.begin(), output.end(), [&dis, &gen](auto& v){v = dis(gen);});

return output;
}

std::size_t data_size = 200;
std::vector<double> data_x(data_size);
std::iota(data_x.begin(), data_x.end(), 0);
std::vector<double> data_y = randn(data_size);
std::vector<double> data_c = randn(data_size);

xpl::linear_scale scale_x, scale_y;
xpl::linear_scale scale_size;

auto scatter = xpl::scatter::initialize(scale_x, scale_y, scale_size)
.x(data_x)
.y(data_y)
.size(data_c)
.stroke("black")
.default_size(128)
.enable_move(true)
.colors(std::vector<xtl::xoptional<std::string>>{"orangered"})
.finalize();

xpl::axis axis_x(scale_x), axis_y(scale_y);
axis_x.label = "x";
axis_y.label = "y";
axis_y.orientation = "vertical";
axis_y.side = "left";

xpl::figure fig;
fig.padding_x = 0.025;

(continues on next page)

12 Chapter 1. Licensing

https://github.com/QuantStack/xplot.git
https://github.com/bloomberg/bqplot.git

xwidgets

(continued from previous page)

fig.add_mark(scatter);
fig.add_axis(axis_x);
fig.add_axis(axis_y);

xpl::toolbar tb(fig);

xw::vbox b = xw::vbox::initialize()
.children({fig, tb})
.finalize();

b

Output

xleaflet is the C++ backend for the leaflet maps visualization library. The Python reference implementation is available
in the ipyleaflet project

C++ code

#include "xwidgets/xhtml.hpp"

#include "xleaflet/xmap.hpp"
#include "xleaflet/xmarker.hpp"

auto html = xw::html::initialize()
.value("Hello from an xwidget in an xmarker!")
.finalize();

std::array<double, 2> center = {52.204793, 360.121558};

auto map = xlf::map::initialize()
.center(center)
.zoom(15)
.finalize();

auto marker = xlf::marker::initialize()
.location(center)
.draggable(false)
.popup(html)
.finalize();

map.add_layer(marker);

map

Output

xproperty is the C++ implementation of the observer pattern underlying xwidgets. It is to xwidgets what the
traitlets project is to ipywidgets.

1.6. Related projects 13

https://github.com/QuantStack/xleaflet.git
https://github.com/jupyter-widgets/ipyleaflet.git
https://github.com/jupyter-xeus/xproperty.git

	Licensing
	Installation
	User Guide
	Serialization and Deserialization of Widget Attributes
	Compiler workarounds
	Releasing xwidgets
	Related projects

